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Theses:

1) Fluid moment equations for n, T and V with neoclassical-type closure
for (E 6?) provide framework for tokamak plasma transport equations.

2) New approach: a) starts from kinetics not Braginskii; b) solves radial,
parallel, toroidal force balances; & c) uses E, for ambipolar particle fluxes.

3) Next step issue for M3D and NIMROD codes is to explore dissipative
parallel /poloidal flow damping effects to obtain trapped-particle effects
and bootstrap current in neoclassical || Ohm’s law, and poloidal ion flow.

Outline:
Motivation and multi-stage strategy
Faster time scale constraint from ion radial force balance
Simulating || viscous stress, force — for neo || Ohm’s law, poloidal ion flow
Toroidal rotation equation (and E;,) from condition for no radial current
Net flux-surface-average density equation — and some consequences

Summary
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Motivation: Develop Xport Equations For Low Collisionality

e Tokamak plasma transport equations for modeling codes (e.g., ONETWO,
TRANSP) are usually obtained from n, V', T fluid moment equations with
collisional Braginskii closures, and then ad hoc terms are added for

neoclassical effects on || Ohm’s law (trapped particle effects on 7, bootstrap current),
fluctuation-induced transport induced by micro-turbulence,
heating, current-drive and flow sources & sinks,

effects of small 3D magnetic field asymmetries, etc.

e But tokamak plasmas are not in a collisional regime! — And we should
develop transport equations that naturally include all these other effects.

e Here, we develop' self-consistent luid-moment-based radial transport equa-
tions that include all these effects for nearly axisymmetric single-ion-species
tokamak plasmas using neoclassical-based closures instead of Braginskii’s.

e The procedures (solve for flows in flux surfaces first) and net plasma trans-
port equations are analogous to those developed for stellarator transport.

1J.D. Callen, A.J. Cole, C.C. Hegna, “Toroidal flow and particle flux in tokamak plasmas,” UW-CPTC 08-7, April 2009 (www.cptc.wisc.edu);
Monday afternoon poster S1.00047 at upcoming Sherwood (APS) meeting.
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Multi-Stage Strategy Is Used To Determine Xport Equations

e I. Average the density, momentum and energy equations over fluctuations
(average over toroidal angle ¢) and then flux-surface-average (FSA) them.

e II. Consider sequentially specific components of the momentum equation:

ITA. Radial (~ ps): Use zeroth order radial force balance enforced by comp. Alfvén
waves to obtain relation between toroidal, poloidal flows & electric field E,, dp;/dr.

II1B. Parallel (~ ms): Use FSA parallel viscous forces to obtain the parallel neoclassical
Ohm'’s law and and ion poloidal flow from || equilibrium momentum, heat flux equations.

11C. Toroidal (~ s): Require ambipolar radial particle fluxes ((J-Vp) = 0) at second
order to obtain FSA toroidal momentum equation, and hence toroidal rotation and FE,.

KEY POINT is to solve first for poloidal lows, then toroidal flows on longer time scale.

e [II. Substitute net second order ambipolar fluxes back into FSA transport
equations to obtain final comprehensive “radial” transport equations.
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I. Average Moment Equations Over Fluctuations, Then FSA

e First, use a small gyroradius expansion to order various terms.

e Next, “ensemble ({-) average” over fluctuations (overbar) & flux-surface-

average (FSA, (---)) density, energy equations [V’ = dV (p)/dp]:

8?’1,0 1 — — =

density: E T+ V' 80 ( V'Ty) = (S,), Ty = ( (noVs + 71 V}) - Vp),
2 (o))
energy: — — — .
gy 2 ot V' ap q2 2 PoV2 T p1Vi P

= <QA> - <§1-171 + Ry-Vi > + <1:/2 Vo + 171-6151> —(7:9%) + (Sp).

e Finally, similarly average the momentum (force balance) equation and de-
termine its radial (Vp-) component and the FSA of its parallel (Bj:) and

toroidal angular (é; - = R €; ) components (minus some terms in ||, ¢t eqns):
: v >, v . L =
radial O{48°}: mno—_ - = nq(E+VxB)—Vp == Pm g = JxB — VP,
a(Bo-V)

parallel O{é}: mny = ngq(§0.§A>_(B’O.ﬁ.#>+<§0.f{’>+<§0.§m>_mm)(go,‘:/’,ﬁ‘:/’ ),

ot
0 = _—— = - - =
toroidal O {4?}: pn _,(é’C-mnOV) =|qLo|+ q(énV XB) — (€ V-m) — (V-mn(€-V)V) + ---
T
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II. Order §°, 6%, 6% Force Balance Equations Have Consequences

e 0°: Zeroth order fluid moment equations yield ideal MHD model.

e ITA. Compressional Alfvén waves L to EO enforce foxﬁo = 6P0 plus
Ohm’s law Eg + V x By = (f()XEO — epe)/nee yields radial force balance:
0=2, [nigi(B+ VxB)— Vp] — Q=V.-9¢=— (d‘I’ 4L dp
d"pp n;q; d";bp
Er 1 dpz Bt

— |V} ~ — + V,,| relation between toroidal, pol. flows and E,, dp;/dr.
B, mn,q;dr B,

_qv.ee)

e Maxwellianization of electron, ion distributions on their collision times of
1/v.,1/v; cause n, T to be constant over collision lengths A., A\; and hence
on flux surfaces, and flows V to become physically meaningful.

e §!: First order flows are on magnetic flux surfaces (0, ¢ or A, || directions):
Box Vi, <d<I>0 N 1 dpso)
B(z) d"vbp Nso4ds d"vbp .

ExB and diamagnetic

Vi = &(V-V0) +&(V-V¢) = ViBo/Bo+ Vy,,  Vin
Cross

4

pol(;,idal toroidal par;llel

e 42: Radial flows L to flux surfaces are second order: V- ﬁgbp # 0

— to calculate, need to determine flows in surface first, as in stellarators.
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IIB. Electron Parallel Force Balance Yields | Ohm’s Law

e Flux surface average of || component of fluctuation-averaged momentum
equation yields first order parallel force balances (B = By, (S,) = 0 here):

msnso% = n30q3<B°EA>—<B-V-7TS>—|—<

=

ﬁ8>+<§ m>_msn30<§"7'6‘7 >+n30qs<§°‘_/j\ XB’J_>.

w1

e For times t > 1/v, ~ 10 us, equilibrium electron || force balance becomes

0 = — nee(B-B"Y = (B-V-%,) 4+ (B-B.) + (B-§ur) — menoo(B-V,- 9V, ) — noe(B-Vx BL).
e Using the collisional friction relation Eo-ﬁe = — EO-Ri ~ neOeBOJ”/o-”,
this equation yields the neoclassical parallel Ohm’s law:

(BodJ)) = g||<§0'EAZ + SU||/ne0€)@0'§';e||z + <E0°fCD> + <§O'fdyn>-

ohmic current tp, bootstrap current current drive dynamo

e Parallel currents are driven by || electron mom. sources and fluctuations:

(EO . fCD) = — (o) /neo0e) (Eo . <§em — me‘:/egen)) — non-inductive current drive,
(EO . fdyn> = \(mea'”/e) <§0 . (‘7;6‘7; + 6°;e/\) >, + ?||(§0 - V,x B, >, — fluctuation-driven.
| Reynoirds stress Maxwell stress
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IIB. Poloidal Flow Is Obtained From Plasma || Force Balance

e Summing the parallel force balances over species yields (for S, = 0)

mini———a ~ —(By-V-m;) — ming(Bo-V,-VV,) + (By- J\xB.) + (By - S Sam)-

e The poloidal flow is determined mainly from parallel ion viscous force:

on;T;

<§'6';i||> ~ m;nio | MiooUie + o1 Qi + -+ | (B?), Lioos Hio1 ~ /€ V.

e Fort > 1/v; ~ 1 ms, poloidal flow is usually obtained from (Eﬁ?m ~ 0:

<!

Vo 01 —2 I dT: 1.17 dT;
~ _ Fio1 Qip ~ Cp 0 V. ~ 0

———— — ~ + O{§%}.
B-V6 Kioo 51T qi(B?) di, "7 ¢B dr 107

UiOO (wp) =

e Including all the drives in the parallel plasma force balance above yields

Up(p) ~ US(p) — <§0(‘26‘2+67ﬁ/\)> n <E0'5\X§J_> + <§0'25§3m>
P N tioo(Bg) mmioftioo (BY)
neoclassical h ~~ d S ~~ d
|| Reynolds stress || Maxwell stress + flow sources

e Having determined the poloidal flow, the toroidal flow is (Q., = I U;9/ R?):

dd 1 dp,‘

n E, 1 dp; 1.17 dT;
d"pp n;q; d"pp

)—l—Q*p — |V > —

Q .
t B, mn;q;B,dr + q;B, dr

v.e<:_<
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How Can We Add These || Flow Damping Effects To Codes?

e Braginskii viscous force due to CGL form for parallel stresses is

o BB 1 3 B-w.-B o nn oo 20 L .
7T|| Eﬂ'” (E—g), ’/T” = _EnOT’ wW VV+(VV)T— 5 I(VV)

e Parallel component of parallel rate of strain has a couple of forms:

B-W-B/2|= B(B-V)(V-B/B) + [Bx(BxV)|-& — (B¥3)V.V

.B).

U

= B*V.VInB + B-Vx(VxB) + (2B¥3)V.V — (B-V)(

eFor V.B=0,V.V=0and V, = (1/B2)§X6f, the last form yields
T = — 319 (V-V In B) + Am, where A= — (310/B®)(B-V f)[B-V x (B/B)] is small.

e Viscous force for the Braginskii viscous stress is (K is curvature vector)
V-w =m [§— B(B-VInB)/B? + (1/B*)B(B-V)m — (1/3)V

=i B-V-ﬂ'” = —m (B-VlnB)—I—(Z/?))(B-V)Tr”.

e FSA of this neglecting Am and using V-VInB = (B -VInB) Uy(v,) is

(B-V-m)) = 319 ((B-VIn B)?)Uy, with Up(¢p) = Fa, from 0 = V-V = (B-V0)
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Adding Parallel Flow Damping Effects To Codes (continued)

e The neolassical parallel viscous force is given by the same form:

— — > . 2 . . .o . _ <(§ ‘6lnB)2>
(B -V-m ) = mnu(B?*)Uy, which relates to Braginskii via p = 3nq
mn(B?)

e The neoclassical poloidal flow damping frequency p for electrons is

2.3\/€v, o ve Rq
73 for collisionality parameter v,, = =

B (1 4 vt "+ vie) (1 + €3/21,,) ’ 32wy, €32,
— banana regime for v, < 1, plateau for 1 < v,, K 6_3/2, Braginskii for v,, > € 3/2,

e

e PROPOSAL: Implement Braginskii operator with neo. viscous damping
frequency p in M3D and NIMROD?? Some issues for such a proposition:

Best form of 7| to use? V., — — f/nee ~ V2B yields 4th order operator in aﬁ/at eqn.
Poloidal variation of viscous force for v, << 1 not properly captured — but do we care?
Long parallel scale variations should still be relaxed with Braginskii coefficient 1,7

Heat flow offsets [Ug — Uy — (cp,I/qi{B?))(dTy/d,)] to damp flows to nonzero values.

Need Z.g effects on u for realistic tokamak plasma situations.

e Ultimate test of procedure is via Held et al. kinetic-based approach.

2C.R. Sovinec, www.cptc.wisc.edu/sovinec_research/notes/e_viscosity2.pdf; C.R. Sovinec et al., 2007 Sherwood Conf., Annapolis, MD.
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IIC. Toroidal Torques From Force Balance Give Radial Flows

e A key vector identity for determining radial flows is (€; = Rzﬁc = Ré’c)

éc VxBg= — V- é’Cxﬁo = V-ewpp — toroidal component of V x By gives radial flow.

e Thus, taking toroidal angular (€, -) component of species force balance and
averaging over fluctuations and a flux surface yields particle flux:

(ng‘:/; . 6'«,%) + (ﬁl‘_;'l . ﬁwp) average plus fluctuation-induced radial particle flux,
]_ = - >
= p; [— (€c-R) + <§C-V°7T>} — no(Ec-E?) collision-induced particle fluxes I',, I',

~ ~

— (€cnoViXB) — —(€:8Spm) +— | —
q qg \ Ot

[mng(Ec-Vi)] + (V- mn(e*c-vl)vl)), fluct., inertia.
£r

e This equation must also be transformed from & to 1, coordinates using

2

= 0 = - =t 1 0 _ =
(€c-D{mnoVi}) ~ — P°¢p8—p[mno(5c"/1>]+ (V:[mno(€-Wi)dc])+ Fa—pz[V,Dnmn0<€C‘W>]'

e Using é; = R2V( = IEO/B§—§OX6¢p/Bg and 136 ~ neoe(j]|/0'||—|—f/\/0'l):

1 _ = I /ByR,\ 1 /BoxVe, = neol /JyBo\ neo | |V,|2\ dPy
— (€ Rs) = — 2 o —2p'RS == < ”2 >+ 2p .
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Particle Flux Has Many Contributions I: 7 Ambipolar

e The radial particle flux can be written in terms of its various components:

L = (T Vp) = (noo(Vs — @) -Vp) + (iV1-Vp) — (8/8p)| V' Dyny] = Tg+ 7 + I,

= La+Tps+Tpp + Tpe + T'ep + Tayn + T'ea + FEHA + 7t 4 Ipot + I'Rey + IMax + g + 17y, + I's -

I'; +I'y., ambipolar (superscript a) rne, non-ambipolarr (superscript na)
e Ambipolar Fluxes’ (¢, = di,/dp ~ B,R a):
ngep ﬁsJ_ TNe |6p|2 dP, T +T; 9 )
Iy = TR = — 5 , o v ~ VeQ,, classical,
Bg qs oL B; dp o (Bj)
/i B2 \'\ dP. 2
I'ps = — Theo = 5 (1 — g ) —0, Dpg ~ iq2Dcl ~ q¢?’D,, Pfirsch-Schliiter,
o ¥, \ Bg (Bj dp g
1 - o S 9 q? 1
Iyp = W (Bo-V 7)), Dy, ~ HeQyp, ~ Y D, banana-plateau,
_ d’ne() . 1 0 /= _ nﬁlc D .
[pe = — ( Dy i + NeoVpe |, Ve = Va—p(v D,), D, = E ~ 3, paleoclassical,
Lcp 4 Layn = [(neol) /(o) w;(Bg))](EO - (Jep + Jayn)), current drive, dynamo effects,
Tps = — neo(é - E4) (1 — I*(1/R?) /(B2)) /4., EAxB,/B? radial pinch.

3K.C. Shaing, S.P. Hirshman, and J.D. Callen, Phys. Fluids 29, 521 (1986); K.C. Shaing, Phys. Fluids 29, 2231 (1986).
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Particle Flux Has Many Contributions II: 8 Non-ambipolar

e Non-ambipolar fluxes (I'’s here are multiplied by 1,01’9 = dvy,/dp ~ B,Ra):

~ 2
1 - SNA T i Be dT’l
AL g gy Tk Bl ) (p2ay _(R2QL)), Qe 2T N NA | vise,
7| sl B . d

0 q; D

s 2
el Zne Zpe

1 = 1 -
Pni = —(€-V-ms1) q_ <_’C’V'(7"u+7"u+7"u)> ~ = x: Vs, Xt ~ (1‘|‘(12)’/in2 + Dy,

1 0 1 0

Iy = — —| mango{ € ‘:/8 ~ — —| m;n;p(R*Q ion polarization flow for — 0
pol 4. Ot o of ¢ ) 4 Ot . of t)s p ot # 0,
1 0 , - 5.5 - S .
I'Rey = » V’(‘?_p(v I o0 ), [ Hspe = msnso((Vp-Vs) (Vicé)) +(Vp-msp-€c),| Reynolds stress,
—= = 1 ., = 3 1 , = =23
I'Max = — (€1 ViXB) ~ —(é; - JXB) = —(€;- B-VB), Maxwell stress,
e efi
1 = = Cag w min;oR B?
Ly >~ —(€r+ Jjmn X B ~d(p— 'mn - FE-induced res. layer
). O =
L, = Pity —(msnso(€ - Vi)), 1, transients,
P qs Op
1 ., =
Ios = — —(€¢+ Som)s momentum sources (e.g., NBI, CD).
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IIC. Radial Current Is Obtained By Summing Particle
Fluxes Over Species And Yields Toroidal Torque Balance

e Sum radial species currents to obtain net radial plasma current:

(fﬁp) = Z qgs (I‘“ + I+ I‘”a> Z q; I’ — sum of non-ambipolar currents.

e Charge continuity equation on a 1), surface obtained by summing g, times
density equations over species is (py, = 0 and ) _, qs{Ssn) = 0 for simplicity)

a| 10, ww . ai—p, 1 O
abpv (Pq))"‘ﬁ 6_p(v (J-Vp)) =0 = [
e “Vacuum” term 8(E-Vp) /0t is ~ c4,/c® ~ 107° < 1 smaller than the neo-

classical polarization flow from 88/t ~ 8(E-Vp) /8t in (J-Vp) ~ q;Tipol;
thus, this quasineutral charge continuity equation requires (J - Vp) = 0.

® Setting (f . ﬁp) to zero yields comprehensive toroidal torque balance equa-
tion for the toroidal angular momentum density L; = m;n;o(R*$;):

1 0 L o= ;N 1 0 oL,
~~ 4 1, , pal h ’ FE,M —2 sources
inertia NTV from BII ©h HEO, pateo Reynolds stress | axzpp motion
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IIC. Toroidal Rotation Determines Radial FElectric Field
Required For Net Ambipolar Radial Particle Flux

e From toroidal rotation () = L;/(m;n;o(R?)), radial electric field E, is:

- dd -
—|Vp|— ~ |Vp] (<ﬂt>w;,+

,| |Vp| varies with 6.
dp

E,

nioq; dp q; dp

e The resultant E, (or (2;) causes the electron and ion non-ambipolar radial
particle fluxes to become equal (i.e., ambipolar):

I"(E,) = Z;I"(E,) — (J-Vp) =0 =  Q (or E,) equation.

e Hence, net ambipolar radial particle flux is sum of I'* and I'"**(E,), which is
easiest to evaluate for electrons since (J-Vp) ~ I'""*(E,) ~ 0 (“ion root”):

t = _ t
Féle — ng —i; I1eapg + F:a(EP) - Fine .
intrinsically =~ non-ambipolar

i E
ambipolar % ambipolar

e Dominant electron contributions to I'’* are usually from electron Reynolds
and Maxwell stresses: I'"'*(E,) ~ Icrey(Ep) + Lemax(Ep).
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III. Resultant Transport Equations Can Now Be Specified

e Density (assuming for simplicity the particle source (S,,) is ambipolar):

1 9 ong 1 0 _ "
— —| (V'n ,— + — — [V/'TY(E,))] = (S, Ney = N ey, = —
V' 9t z/;E, 0) + Py, ap + v ap[ et (Ep)] (Sn), 0 0 Pip, 1%,
F;let(Ep) = P+ T7(E,) ~ Pbp + Fpg + PeRey(Ep) + FeMaX(Ep)/
collision-induced fluctuations
r,, — b2 Vie = 21 2y — e nwVixB)
~ — — — ngVye — — — e — — (€ neoVe .
bp : n dp 0 p/ e V,wl,) Ap p< w},) ¢ 0
paleo diffusion, pinch ¢ Reyno];ls stress e Maxwell stress

e Toroidal rotation (©2;) = L;/(m;n;(R*)) (and radial electric field E,):

see bottom of p 12 viewgraph for L; = m;n;(R?S;) (and preceding viewgraph for E,).

e Energy (similar contributions as density but without ambipolar constraint)
— equations still being worked on.
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This Approach Is Different And Has Some Consequences

e Key differences in this new approach for plasma transport equations:

First solve for flows of electrons, ions in flux surfaces — || Ohm’s law, poloidal ion flow.
Simultaneously solve transport equations for Q; (— E,) and 1,, as well as usual n, T.

Effects of micro-turbulence on parallel Ohm’s law (p 6), poloidal ion flow (p 7), particle
fluxes (p11), mom. flux (p11) and €2; (p12) are all included self-consistently.

Fluctuation-induced particle flux is determined from e Rey, Max stresses, not (ﬁﬁm
Source effects (e.g., NBI momentum input and J cp) are included self-consistently.
Poloidal field transients (¢p # 0) and current diffusion time scale effects are included.
Net transport equations follow naturally from extended two-fluid moment equations;

hence they are consistent with M3D, NIMROD code frameworks — basis for FSP?

e Some consequences that result from this new approach are:

Radial electric field is determined self-consistently & forces ambipolar particle transport.
Paleoclassical n, 2;, T diffusion and pinch effects are included naturally, important?

Poloidal flux transients (7,51, # 0) induce radial motion of n, €2;, T' which could lead to:
density “pump-out” due to ECH causing ¢p < 07,
(2; decrease with co-current ECCD due to its momentum input and to QLP < 07,
Increased “transient transport” of T, when gbp # 07
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Summary

e Comprehensive transport equations for n, {2; have been derived:

A systematic gyroradius expansion procedure is used.

Fluid moment eqns. are averaged over fluctuations, then flux surface averaged (FSA).

e Radial, parallel and toroidal components of force balance are considered:

4%: Radial force balance leads to relation between poloidal, toroidal flows & EO, ﬁpio.
d: Parallel viscous damping determines neoclassical || Ohm’s law and poloidal flow.

42: Radial particle fluxes (7 ambipolar, 8 non-ambipolar) from FSA of average ¢ torques.

e M3D, NIMROD issue is how to best include parallel viscosity dissipation:

Maybe we can just use Braginskii operator — but use neoclassical viscosity coefficient.

But this needs to be tested by comparisons with Held et al. kinetic-based procedure.

e Requiring an ambipolar radial particle flux (i.e., (J-Vp) = 0) etc. yields:
Evolution equation for toroidal angular mom. density L; = m;n;o(R*Q:) — (), E,,
Net radial particle flux with collisional (I', 4 I';,c) and electron I'’*(E,) contributions,

Radial motion (py,8/0p) in n, 4, T equations due to poloidal flux motion (b, #0).
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